Physica C 470 (2010) S712-S713

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

Possible origins of the low-temperature anomaly in CeRu₂

C.L. Huang^a, C.H. Chen^{a,*}, S. Mukherjee^a, Y.Y. Chen^b, H.D. Yang^a

^a Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan
^b Institute of Physics, Academia Sinica, Taipei, Taiwan

ARTICLE INFO

Article history: Accepted 24 October 2009 Available online 28 October 2009

Keywords: CeRu₂ F-electron systems Transport Thermodynamic properties

1. Introduction

CeRu₂ is known as a type II superconductor with T_c = 6.2 K [1] and critical field is 6.5 T with the cubic Laves phase structure. The *f* electron is most likely itinerant in CeRu₂, in which the valence is fluctuated, contributing to the conduction electrons at low temperatures. The specific heat anomaly was reported and explained to result from the magnetic ordering the excess of β -Ce [2]. We argue that the result is questionable, and thus present different description in this work.

2. Experiments

The polycrystalline CeRu₂ was synthesized by the arc melting method. The specific heat C(T) was measured from 0.6 to 10 K under the magnetic fields up to H = 8 T with a ³He thermal relaxation calorimeter [3]. The dc magnetization measurements were proformed using a SQUID magnetometer (Model: MPMS–XL, Quantum Design) in the temperature range from 1.8 to 10 K.

3. Results and discussion

The data obtained for the temperature dependence of the specific heat of the CeRu₂ sample under different magnetic field are graphically represented in Fig. 1. The superconductivity is totally suppressed at H = 8 T, while a field-dependent anomaly appears at $T^* \sim 6$ K. This phenomenon can be also observed in dc magnetic measurements, as depicted in Fig. 2.

* Corresponding author. E-mail addresses: m972030004@student.nsysu.edu.tw (C.H. Chen), yang@mail. phys.nsysu.edu.tw (H.D. Yang).

ABSTRACT

The magnetic-field dependence of DC susceptibility and specific heat of polycrystalline CeRu₂ has been studied. The superconducting transition temperature (T_c) of the sample is 6.2 K. An extraordinary anomaly was observed at the $T^* \sim 6$ K in the absence of magnetic field (H), and T^* is suppressed slightly with increasing H. Such an anomaly can be most probably attributed to the existence of few amounts of CeRu₂ nano-clusters embedded in the bulk or the magnetic ordering of impurity phase Ce_xRu_y. The T^* is actually a superconducting transition, which has a higher critical field than the bulk CeRu₂.

© 2009 Elsevier B.V. All rights reserved.

We collected the specific heat and the susceptibility data and plotted a *T*–*H* phase diagram in Fig. 3. There are two possibilities to explain the origin of the anomaly. First, there are some different phases Ce_xRu_y coexisting with $CeRu_2$, which shows a canted antiferromagnetic transition ~6 K and thus the *T*^{*} sustains under high magnetic fields. An X-ray absorption spectroscopy study with limit resolution might shed light on this issue. Second, the anomaly comes from $CeRu_2$ nano-clusters embedded in the bulk, originated from the disruption of lattice periodicity which have higher H_{c2} [4]. Hence the *T*^{*} is a superconducting transition temperature of the

Fig. 1. Specific heat of CeRu₂ under 0, 0.1, 0.2, 0.3, 0.5, 1, 2, 4, 6 and 8 T from bottom to top. The data is offset for clarity. The line with an arrow points that T^* is suppressed by field.

^{0921-4534/\$ -} see front matter \circledcirc 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2009.10.095

Fig. 2. The dc susceptibility data of CeRu₂ under H = 4.5kOe. The arrow points the anomaly. The drop around 3.5 K is a superconducting transition.

CeRu₂ nano-clusters. Transmission electron microscopy and transport measurements on CeRu₂ nano-particles would provide more information on this speculation.

4. Conclusion

The specific heat and the dc susceptibility measurements under magnetic fields on polycrystalline CeRu₂ have been performed. The anomaly, which appears at $T^* = 6$ K, may come from the impurity

Fig. 3. The T-H phase diagram of CeRu₂ separated with a superconducting region (SC) and an unknown region (?).

phase Ce_xRu_y or CeRu₂ nano-clusters. Further experiments are necessary to realize the exact nature of the anomaly.

References

- [1] B.T. Matthias, H. Suhl, E. Corenzwit, Phys. Rev. Lett. 1 (1958) 449.
- [2] R.R. Joseph, K.A. Gschneidner Jr., D.C. Koskimaki, Phys. Rev. B 6 (1972) 3286.
 [3] H.D. Yang, J.-Y. Lin, H.H. Li, F.H. Hsu, C.J. Liu, S.-C. Li, R.-C. Yu, C.-Q. Jin, Phys. Rev. Lett. 87 (2001) 167003.
- [4] W.-H. Li, C.C. Yang, F.C. Tsao, S.Y. Wu, P.J. Huang, M.K. Chung, Y.D. Yao, Phys. Rev. B 72 (2005) 214516.